Answer:
rolling ball down a hill
Explanation:
A rolling ball has kinetic energy
Answer:
Support at Cy = 1.3 x 10³ k-N
Support at Ay = 200 k-N
Explanation:
given:
fb = 300 k-N/m
fc = 100 k-N/m
D = 300 k-N
L ab = 6 m
L bc = 6 m
L cd = 6 m
To get the reaction A or C.
take summation of moment either A or C.
<em><u>Support Cy:</u></em>
∑ M at Ay = 0
(( x1 * F ) + ( D * Lab ) + ( D * L bc + D * L cd )
Cy = -------------------------------------------------------------------
( L ab + L bc )
Cy = 1.3 x 10³ k-N
<em><u>Support Ay:</u></em>
Since ∑ F = 0, A + C - F - D = 0
A = F + D - C
Ay = 200 k-N
The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,

The final position of the heroin is below the ground level,

The initial height will be the zero point of our system of reference,


Replacing all this values we have,



Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J
A because centrifugal is to velocity to how slow or fast something is and centrifugal has expresssed as ac=v2 / r (1)<span />
You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"
Maybe you mean "find" acceleration using given velocities, or a velocity function?