Explanation:
its the minimum amount of energy required to remove the most loosely bound electron
Answer:
Explanation:
A vector is parallel to the y axis .
Let its magnitude be A . So the vector can be represented as A j .
where i and j are unit vectors in x and y axis direction .
The x component of A j will be dot product of A j with i
The x component of A j = A j . i
= A x 0 [ Since j . i = 0 ]
= 0
Lever: a bar used to move something
Wedge: a tool used to go in between object to put them in place
Incline plane : a ramp it’s used to help rise heavy things
Pulley: it’s a wheel that supports movement and change of direction
Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values

The question is asking to calculate the object's speed v1, v2, v3 at the certain time is the given of the problem, in my calculation, I would say that the speed would be 2m/s, 1.5m/s, 0.22m/s. I hope you are satisfied with my answer and feel free to ask for more if you have question and further clarification