Answer:
A: The frequency of the vibration is 1.3329 Hz
B: The total energy of the vibration is 18.39375 J
Explanation:
The force of the man his weight causes the raft to sink, and that causes the water to put a larger upward force on the raft. This extra force is a restoring force, because it is in the opposite direction of the force put on the raft by the man. Then when the man steps off, the restoring force pushes upward on the raft, and thus the raft – water system acts like a spring, with a spring constant found as follows:
k= F/x = ((75 kg) * (9.81 m/s²))/(5*10^-2 m) = 14715 N/m
The frequency of the vibration is determined by the spring constant (k) and the mass of the raft (210kg).
fn = 1/2π * √(k/m) = 1/2π * √(14715 / 210) = <u>1.3329 Hz</u>
<u>The frequency of the vibration is 1.3329 Hz</u>
<u />
<u>b) </u>
Since the gravitational potential energy can be ignored, the total energy will be :
Etot = 1/2 k* A² = 1/2 * (14715 )*(0.05)² = 18.39375 J
<u>The total energy of the vibration is 18.39375 J</u>
Momentum = mass x velocity
m=7.3kg
v=20 m/s
momentum= 7.3(20) = 146 kg m/s
Answer:
Reflective
Explanation:
The radiation pressure of the wave that totally absorbed is given by;

and While the radiation pressure of the wave totally reflected is given by;

Now compare the two-equation you can clearly see that the pressure due to reflection is larger than absorption therefore the sail should be reflective.
Answer:
Newton's third law.
Explanation:
•your hand of holding UP/DOWN the cup has a reaction with force
•Coffee inside the cup is pushing outward to the edges of the cup
•The cup is pushing inward onto the coffee
"His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A."
Answer: work = 1,305kJ
Explanation:
angle= 30°
force= 1,500N
distance= 1,000m
The formula for work is : Work= force x distance, however there is an angle of 30° between the direction of force applied and the direction of motion, therefore force must be decomposed to its value on the horizontal axis which is the direction of motion by using the cosine of the very angle.
W= F×cos(α)×D
W= 1,500×cos (30)×1,000
W= 1,305kJ ( kilojoules)