Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally
Answer:
The charged particle will follow a circular path.
Explanation:
The magnetic force exerted on the charged particle due to the magnetic field is given by:

where
q is the charge
v is the velocity of the particle
B is the magnetic field
is the angle between v and B
In this problem, the velocity is perpendicular to the magnetic field, so
and the force is simply

Moreover, the force is perpendicular to both B and v, according to the right-hand rule. Therefore, we have:
- a force that is always perpendicular to the velocity, v
- a force which is constant in magnitude (because the magnitude of v or B does not change)
--> this means that the force acts as a centripetal force, so it will keep the charged particle in a uniform circular motion. So, the correct answer is
The charged particle will follow a circular path.
yes if u let facts hold u down versus your mind and dreams. your ideas and dreams there can be no facts about the future unless u make that true!
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
B is correct because most of the cells look the same so it's B