sorry i don't know the answer i'm really sorry
Answer:
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Explanation:
As we know
1 liter = 1000 grams
2H2 + O2 --> 2H2O
Weight of H2 molecule = 2.016 g/mol
Weight of water = 18.01 gram /l
2 mole of oxygen react with 2 mole of H2
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Answer: Molarity increases
Explanation:
Molarity, also known as concentration in moles/dm3 or g/dm3, is calculated by dividing the amount of solute dissolved by the volume of solvent. So, Molarity (c) = amount of solute (n) / volume (v)
i.e c = n/v
Hence, molarity is directly proportional to the amount of solute dissolved, and inversely proportional to the volume of solvent.
Thus, at same volume, any increase in solute amount increases molarity while a decrease will also decreases molarity.
Answer:
See Explanation
Explanation:

Hence the mass defect is;
[235.04393 + 1.00867] - [ 136.92532 + 96.91095 + 2(1.00867)]
= 236.0526 - 235.85361
= 0.19899 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.19899 amu = 0.19899 * 1.66 * 10^-27 = 3.3 * 10^-28 Kg
Binding energy = Δmc^2
Binding energy = 3.3 * 10^-28 Kg * (3 * 10^8)^2 = 2.97 * 10^-11 J
ii) 
Hence the mass defect is;
[10.01294 + 1.00867] - [7.01600 + 4.00260]
= 11.02161 - 11.0186
= 0.00301 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.00301 amu = 0.00301 * 1.66 * 10^-27 = 4.997 * 10^-30 Kg
Binding energy = Δmc^2
Binding energy = 4.997 * 10^-30 Kg * (3 * 10^8)^2 = 4.5 * 10^-13 J
Answer:
The correct option is;
A warm front is approaching the city and temperatures will increase
Explanation:
A low pressure forms by the movement of air away from a particular spot such that the pressure reduces. The movement of air away from a spot occurs when there is a boundary of warm and cold air such that the air moves to maintain a uniform temperature.
Low pressure centers are associated with warm fronts, resulting in the fall of barometric pressure or observed low pressure and are characterized by a rise in temperature.