Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
All you have to do is multiply that by the mass or volume.
Answer:
The final volume is 
Explanation:
<u>Data:</u>
Initial temperature:
Final temperature: 
Initial pressure: 
Final pressure: 
Initial volume:
Final volume: 
Assuming hydrogen gas as a perfect gas it satisfies the perfect gas equation:
(1)
With P the pressure, V the volume, T the temperature, R the perfect gas constant and n the number of moles. If no gas escapes the number of moles of the gas remain constant so the right side of equation (1) is a constant, that allows to equate:

Subscript 2 referring to final state and 1 to initial state.
solving for V2:


Answer:
The magnitude of the average induced emf in the loop is 0.1 volts.
Explanation:
let Ф be the flux in the loop, B be the magnetic field and A be the area of the loop.
the induced emf in the loop is given by:
ε = - dФ/dt
= - d(B×A)/dt
= - A×d(B)/dt
= - π×r^2×d(B)/dt
= - π×(0.40)^2×(0.20 - (-0.30))/(2.5 - 0)
= 0.1 volt
Therefore, the magnitude of the average induced emf in the loop is 0.1 volts.
Answer:
A. put water in a container under the pot water will disappear from the container .