Here we can say that rate of flow must be constant
so here we will have

now we know that


now from above equation



so velocity will reduce by factor 0.14
Answer:
Bitter Magnet inside a superconducting magnet
Explanation:
Since there are no options available, generally, the electromagnet that is considered the strongest is the Bitter Magnet inside a superconducting magnet.
This electromagnet produces 45 Tesla units which is a result of bitter magnet producing 33.5 Tesla and the superconducting coil produces the additional 11.5 Tesla.
Hence, justifying that the greater the current in the coil the stronger the electromagnet.
Answer:
0.47 J
Explanation:
The elastic potential energy of a spring is given as,
E = 1/2ke²........................ Equation 1
Where E = Elastic potential energy, k = spring constant, e = extension/compression.
Given: k = 15 N/m, e = 0.25 m.
Substitute into equation 1.
E = 1/2(15)(0.25)²
E = 0.46875
E ≈ 0.47 J.
Hence the elastic potential energy stored in the spring = 0.47 J