since both components, length and time, are measurable
<span>since Rate = length ÷ time </span>
<span>∴ rate is also measurable and ∴ quantitative.
</span>
I learned the equation as P•V=k•T .
So x=1, y=1, and z= -1 .
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.
Answer:
1/4 λ film
Explanation:
Let L = total path length then L = 2 t where t is film thickness
There will be a 180 deg phase change at the air-film interface but no
phase change at the film-air interface
L = n * wavelength / 2 where n = 1, 3, 5, 7 etc
(the total path L must be an odd number of 1/2 wavelengths)
Or t = n * wavelength / 4 (the film must be an odd number
of 1/4 wavelengths thick)
1/4 λ film satisfies this condition
Note: Find the missing diagram in the attachment section.