1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
8

The book that set off the women's movement in the 1960s was written by Betty Friedan and was called? The Masculine Mystique Sile

nt Spring The Feminine Mystique .
Physics
1 answer:
omeli [17]3 years ago
8 0

The Feminine Mystique is the right answer.

Betty Friedan was an american author and feminist who wrote The Feminine Mystique which lead to the Second Wave Feminism. The book discusses the problems of women and demands liberty, equal rights and equal wages for them. It challenged the belief of the time that "fulfillment as a woman had only one definition for American women after 1949—the housewife-mother." The book drew large numbers of women particularly the white-middle class women to the feminist cause.

You might be interested in
Define force and provide an example​
ollegr [7]

Answer:

force-strength,power or energy as an attribute of motion, movement or action. Example: Frictional force.

4 0
3 years ago
If a ball is thrown straight up into the air with an initial velocity of 65 ft/s, its height in feet after t seconds is given by
fgiga [73]

Answer:

a) v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s

v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s

v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s

v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s

b) v=65-32(2)=1ft/s

Explanation:

From the exercise we got the ball's equation of position:

y=65t-16t^{2}

a) To find the average velocity at the given time we need to use the following formula:

v=\frac{y_{2}-y_{1}  }{t_{2}-t_{1}  }

Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001

y_{t=2}=65(2)-16(2)^{2} =66ft

y_{t=2.5}=65(2.5)-16(2.5)^{2} =62.5ft

v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s

--

y_{t=2.1}=65(2.1)-16(2.1)^{2} =65.94ft

v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s

--

y_{t=2.01}=65(2.01)-16(2.01)^{2} =66.0084ft

v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s

--

y_{t=2.001}=65(2.001)-16(2.001)^{2} =66.001ft

v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s

b) To find the instantaneous velocity we need to derivate the equation

v=\frac{df}{dt}=65-32t

v=65-32(2)=1ft/s

7 0
3 years ago
Calculate the specific heat at constant volume of water vapor, assuming the nonlinear triatomic molecule has three translational
vampirchik [111]

Answer:

I) c=1385.667\frac{J}{kg K}

II)The difference from the value obtained on part I is: 2000-1385.67 =614.33 \frac{J}{Kg K}

The possible reason of this difference is that the vibrational motion can increase the value, since if we take in count this factor we will have a higher heat capacity, because molecules with vibrational motion require more heat to vibrate and necessary higher specific heat capacity.

Explanation:

From the problem we have the molar mass given M=18\frac{gr}{mol} of water vapor and at constant volume condition. It's important to say that the vapour molecules have 3 transitionsl and 3 rotational degrees of freedom and the rotational motion no contribution.

Part I

Calculate the specific heat at constant volume of water vapor, assuming the nonlinear triatomic molecule has three translational and three rotational degrees of freedom and that vibrational motion does not contribute. The molar mass of water is 18.0 g/mol=0.018kg/mol.

Let C_v (\frac{J}{Kg K}) the molar heat capacity at constant volume and this amount represent the quantity of heat absorbed by mole.

Let C (\frac{J}{Kg K}) the specific heat capcity this value represent the heat capacity aboserbed by mass.

For the problem we have a total of 6 degrees of freedom and from the thoery we know that for each degree of freedom the molar heat capacity at constant volume is given by C_v =\frac{R}{2} so the total for the 6 degrees of freedom would be:

C_v =6*\frac{R}{2}=3R=3x8.314\frac{J}{mol K}=24.942\frac{J}{mol K}

And by definition we know that the specific heat capacity is defined:

c=\frac{C_V}{M}

If we replace all the values we have:

c=\frac{24.942\frac{J}{mol K}}{0.018\frac{kg}{mol}}=1385.667\frac{J}{kg K}

So on this case the specific heat capacity with constant volume and with three translational and three rotational degrees of freedom is c=1385.667\frac{J}{kg K}

Part II

The actual specific heat of water vapor at low pressures is about 2000 J/(kg * K). Compare this with your calculation.

The difference from the value obtained on part I is: 2000-1385.67 =614.33 \frac{J}{Kg K}

The possible reason of this difference is that the vibrational motion can increase the value, since if we take in count this factor we will have a higher heat capacity, because molecules with vibrational motion require more heat to vibrate and necessary higher specific heat capacity.

4 0
3 years ago
The pathologic changes that occur in the development of coronary atherosclerotic lesions include call damage resulting from whic
ale4655 [162]

Answer:

3 effect of oxidized lipids

4 an inflammatory response

5 the formation of plaques

Explanation:

Destruction of cells due to oxidation of lipids whereby free radicals steal electrons in cell membrane.

This occurs when tissues get injured by trauma, bacteria or toxins, thereby causing damages cells to release chemicals like histamine, brakykinn that cause vessels to leak fluid into the injured tissues causing swelling.

-plaques are regions of destroyed cells which are visible structures formed inside a cell culture.

4 0
3 years ago
How does the speed of visible light compare with the speed of gamma rays
DochEvi [55]

Answer:

They are the same

Explanation:

Electromagnetic waves consist of perpendicular oscillations of electric and magnetic field, which oscillate perpendicularly to the direction of motion of the wave (transverse wave). One property of the electromagnetic waves is that they travel in a vacuum always at the same speed, called speed of light:

c=3.0\cdot 10^8 m/s

Electromagnetic waves are classified into 7 different types according to their frequency; from highest to lowest frequency, we have:

Gamma rays

X-rays

Ultraviolet

Visible light

Infrared

Microwaves

Radio waves

We see that both visible light and gamma rays are electromagnetic waves, so they both travel in a vacuum at the same speed, the speed of light.

3 0
3 years ago
Other questions:
  • Describe what happens when you jump from a small boat onto a dock from the perspective of the 3rd Law.
    7·1 answer
  • Si en un recipiente de 2 litros tenemos un gas que ejerce una presión de 2 atm a 60º C, su temperatura será de 559,5ºC si su vol
    5·1 answer
  • A uniform 190 g rod with length 43 cm rotates in a horizontal plane about a fixed, vertical, frictionless pin through its center
    10·1 answer
  • A worker at the top of a 588-m-tall television transmitting tower accidentally drops a heavy tool. If air resistance is negligib
    8·1 answer
  • If 1.8 1016 electrons enter a light bulb in 3 milliseconds, what is the magnitude of the electron current at that point in the c
    13·1 answer
  • Four resistors of 12, 3.0, 5.0, and 4.0 Ω are connected in parallel. A 12-V battery is connected to the combination. What is the
    9·1 answer
  • Abstract about cat eye syndrome?
    7·1 answer
  • Explain why it is important that the balloon is made from an electrical insulator.
    13·1 answer
  • In the amusement park ride Mr. Freeze, riders are uniformly accelerated from rest by magnetic induction motors along a 70 meter
    8·1 answer
  • 1. Define cellular respiration, and state where it takes place.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!