Work done = 0.5*m*[(v2)^2 - (v1)^2]
where m is mass,
v2 and v1 are the velocities.
Given that m = 1.50 x 10^3 kg, v2 = -15 m/s (decelerates), v1 = 25 kg,
Work done = 0.5 * 1.50 x 10^3 * ((-15)^2 - 25^2) = 3 x 10^5 joules
Just ignore the negative value for the final result because work is a scalar quantity.
<span>A. Pecos Bill
</span>According to “The Cyclone,” who invented the Fourth of July is PECOS BILL
NOT:
B. Alexander Hamilton
<span>C. Sam Houston </span>
<span>D. George Washington</span>
Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).
Answer:
Explanation:
a = 4ms⁻², Vf = 180 m/s & Vi = 140m/s
a =
4 = 
t = 40/4
t = 10sec
To Measure Distance Use third Equation of Motion:
2aS = Vf²-Vi²
S = 
S = 12800/8 = 1600m