Answer:
its 1/2 the mass of the object times by its velocity ^ 2
Gay Lussac's Law states: At a constant volume Pressure<span> divided by </span>Temperature<span> is</span>constant<span> P/T = k Together these three laws form the foundation of the Ideal </span>Gas<span>Law. Objective: Students will </span>investigate<span> Gay Lussac's Law relating </span>pressure<span> and</span>temperature<span> at a </span><span>constant temperature.</span>
Answer:
The slope of a position-time graph can be calculated as:

where
is the increment in the y-variable
is the increment in the x-variable
We can verify that the slope of this graph is actually equal to the velocity. In fact:
corresponds to the change in position, so it is the displacement, 
corresponds to the change in time
, so the time interval
Therefore the slope of the graph is equal to

which corresponds to the definition of velocity.
Answer:
vT = v0/3
Explanation:
The gravitational force on the satellite with speed v0 at distance R is F = GMm/R². This is also equal to the centripetal force on the satellite F' = m(v0)²/R
Since F = F0 = F'
GMm/R² = m(v0)²/R
GM = (v0)²R (1)
Also, he gravitational force on the satellite with speed vT at distance 3R is F1 = GMm/(3R)² = GMm/27R². This is also equal to the centripetal force on the satellite at 3R is F" = m(vT)²/3R
Since F1 = F'
GMm/27R² = m(vT)²/3R
GM = 27(vT)²R/3
GM = 9(vT)²R (2)
Equating (1) and (2),
(v0)²R = 9(vT)²R
dividing through by R, we have
9(vT)² = (v0)²
dividing through by 9, we have
(vT)² = (v0)²/9
taking square-root of both sides,
vT = v0/3