Speed, v = fλ.
Where f is the frequency in Hertz, wavelength is in meters.
Speed, v = 2*5 = 10
Speed = 10 m/s.
Answer:
d. all four jovian planets.
Explanation:
The Jovian planets are as follows -
URANUS , SATURN , JUPITER, and NEPTUNE .
All these four jovian planets are having the rings , and the rings are made up of infinite number of small pieces of the ice and the rock .
Hence ,
These planets are comparatively small and dense cores surrounded by massive layers of gas .
Answer:
C
Explanation:
The answer is obvious from the given figure
Answer:
displacement= 30 m towards south, distance= 210m
Explanation:
Distance (scalar quantity) how much ground an object has covered.
Displacement (vector quantity) refers to how far out of place an object is it is the object's overall change in position.
Basically meaning for displacement the directions will be very key
D for Displacement
D= D1+D2
D= 120 (S) + 90 m (N)
Must be in same direction
D= 120 (S) + (-90 m) (S)
D= 30 m (S)
and for distance you are simply just adding how much distance they have covered
so d= d1+d2
d= 90m + 120m
d= 210m
Answer:
T= 1.71×10^{-3} sec= 1.71 mili sec
t_{fc}= 4.281×10^{-4} sec or 0.4281 mili sec
Explanation:
First of all we write equation for current oscillation in LC circuits. Note, the maximum current (I_0)= 5.5 mA is the amplitude of this function. Then, we continue to solve for the angular frequency(ω). Afterwards, we calculate the time period T. qo = maximum charge on capacitor. = 1.5× 10 ^− 6 C
a) I(t) = -ωqosin(ωt+φ)
⇒Io= ωqo
⇒ω= Io/qo
also we know that T= 2π/ω
⇒T= 
now putting the values we get
= 
= 1.71×10^{-3} sec
b) note that the time
it takes the capacitor to from uncharge to fully charged is one fourth of the period . That is


t_{fc}= 4.281×10^{-4} sec or 0.4281 mili sec