Answers:
<h2>The symbiotic relationship that occurs between an orchid and a tree would be classified as commensalism. Most orchids are epiphytes, which mean that that they grow on other plants. This benefits the orchids because they can grow on top of the canopy, which prevents the orchids from being walked on or eaten by ground-dwelling organisms.</h2><h3 /><h3>I HOPE TO IT'S HELP YOU:)</h3>
Explanation:
When carbon atom tends to form single bonds then its hybridization is , when carbon atom tends to form double bond then its hybridization is and when a carbon atom is attached to a triple bond or with two double bonds then its hydridization is sp.
For example, in HCN molecule there is a triple existing between the carbon and nitrogen atom.
So, hybridization of carbon in this molecules is sp. Moreover, nitrogen atom is also attached via triple bond and it also has a lone pair of electrons. Hence, the hybridization of nitrogen atom is also sp.
Thus, we can conclude that s and p type of orbitals overlap to form the sigma bond between C and N in H−C≡N:
The circulatory system and the respiratory system; The respiratory system takes in the oxygen which then goes into our bloodstream to help our cells convert it into ATP energy.
Answer: A forest
Explanation:
Moss are more likely to be found in moist shady locations. They are best known for those species that carpet woodland and forest floors.
Explanation:
Different atoms binds their outermost shell electrons with different amount of energy.
The amount of energy required to remove an electron from an atom is the ionization energy.
- Ionization energy measures the readiness of an atom to lose electrons.
- From the given problem, we can infer that in group O the ionization energy decreases down the group.
- Helium has the highest ionization energy.
- Down a group on the periodic table, ionization energy decrease because:
- atomic radii increases down the group.
- there is an increasing shielding/screening effect of inner shell electrons on the outermost shell electrons.
Learn more:
Ionization energy brainly.com/question/2153804
#learnwithBrainly