Here's what you need to know about waves:
Wavelength = (speed) / (frequency)
Now ... The question gives you the speed and the frequency,
but they're stated in unusual ways, with complicated numbers.
Frequency: How many each second ?
The thing that's making the waves is vibrating 47 times in 26.9 seconds.
Frequency = (47) / (46.9 s) = 1.747... per second. (1.747... Hz)
Speed: How far a point on a wave travels in 1 second.
The crest of one wave travels 4.16 meters in 13.7 seconds.
Speed = (4.16 m / 13.7 sec) = 0.304... m/s
Wavelength = (speed) / (frequency)
Wavelength = (0.304 m/s) / (1.747 Hz) = 0.174 meter per second
Answer:
As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.
This will mean that the denser objects will always go to the bottom.
This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.
There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.
The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.
It would be d all of the above
<u>Answer:</u>
Yes
<u>Explanation:</u>
Average velocity is the ratio of total displacement and time taken for that displacement:

This means if displacement is zero, then average velocity will also be zero.
Displacement is zero when an object moves some distance in one direction, and then moves the same distance but in the opposite direction.
∴ As it is possible for displacement to be zero, it is also possible for average velocity to be zero.
Given data
ball throws upwards at an angle 60°
Horizontal component (Vh) = 12.5 m/s,
Vertical component (Vv) = 21.7 m/s ,
The magnitude of throw/resultant velocity (V) = ?
The resultant velocity /the velocity with which ball is throws is determined by the following equation
V = √[(Vh)² + (Vv)²]
= √[(12.5)² + (21.7)²]
= 25.04 m/s
<em> The resultant velocity or the velocity with which the ball is thrown is 25 m/s</em>