Answer:
The force is 
Explanation:
The moment of Inertia I is mathematically evaluated as

Substituting
for M(Mass of the wheel) and
for
(Radius of wheel)


The torque on the wheel due to net force is mathematically represented as

Substituting 135 N for
(Force acting on sprocket),
for
(radius of the chain) and F is the force acting on the sprocket due to the chain which is unknown for now

This same torque due to the net force is the also the torque that is required to rotate the wheel to have an angular acceleration of
and this torque can also be represented mathematically as

Now equating the two equation for torque
Making F the subject

Substituting values


Answer:
Please, in the Explanation section you will find the explanation of the answer.
Explanation:
The exercise shows the continental United States and 3 cities used in the study carried out by Murdock. It can be said that the sample taken is part of the objective. There are several inconsistencies in Murdock's argument: the first has to do with the fact that the sample that was taken cannot represent the entire American population. A much larger, scientifically calculated sample would be required. The second is that their study did not take into account small cities or people living in the interior of the United States.
If the other driver is going speed limit you can't pass him but if he's going slower than the limit you have to go in the left lane i'm not sure by how much i'll guess 5mph<span />
You can see what is the electron configuration by looking at the layout of the periodic tables. the first shell will have a max of 2 electrons on it, once the first one is filled up a second is added with a max of 8 electrons on it and so on with the 8 as a max. so He, and H will only have them on the first shell but every horizontal row is a new valence or outer shell. so lets say for carbon look at the number in the upper left corner of the box will tell you the total number of electrons you will need. so start off with the first two electrons on the first shell. now you know that carbon needs 6 electrons in total, since you can only have a max of 2 on the first shell you need a second one so on the second one you will have to have the remaining 4. now elements are most stable when they have a full valence shell becuase those are the only electrons that will react with others. so if carbon has 4 it wants to either gain or lose 4 electrons so you could say that it would bond with 4H since each H will donate 1 electron to the C valence shell making all the H and C stable. CH4(methane)