Answer:
5. All of the answers are yes.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
296 N
Explanation:
Draw a free body diagram. The box has two forces on it: tension up and weight down.
Apply Newton's second law:
∑F = ma
T − mg = ma
T = m (g + a)
Given m = 196 N / 9.8 m/s² = 20 kg, and a = +5 m/s²:
T = (20 kg) (9.8 m/s² + 5 m/s²)
T = 296 N
Answer:
Statement 1 and 3 are correct.
Explanation:
1. The mass moves downward, so the net acceleration of the block is straight downward.
2.The mass is sliding through the globe, so only the force of gravity is acting on the mass which pulls it in downward direction. The force of gravity has two components [mg sin∅] and [mg cos∅].
Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.