Answer:
232 J/K
Explanation:
The amount of heat gained by the air = the amount of heat lost by the tea.
q_air = -q_tea
q = -mCΔT
q = -(0.250 kg) (4184 J/kg/ºC) (20.0ºC − 85.0ºC)
q = 68,000 J
The change in entropy is:
dS = dQ/T
Since the room temperature is constant (isothermal):
ΔS = ΔQ/T
Plug in values (remember to use absolute temperature):
ΔS = (68,000 J) / (293 K)
ΔS = 232 J/K
The potential energy of the block is A) 490 J
Explanation:
The potential energy of an object is the energy possessed by the object due to its position in the gravitational field.
It is calculated as follows:

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object above the ground
For the block in this problem, we have:
m = 10 kg

h = 5 m
Therefore, its potential energy is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
4. All of the above
Explanation:
The purpose of striking the ball in a volleyball game:
From the serve you could state that you need to place the ball in motion.
When returning a shot of, you normally want to change the direction of the ball's motion.
During a dropshot, you purposely want to slow down the ball's motion.
The correct answer must be all of the above.
The gravitation acceleration on the moon is different than on Earth. It is 1.6 m/s^2. If you weigh 120 lbs, then you would multiply 120 pounds by the gravitational acceleration on the moon and then divide by the acceleration on Earth.
(120 lbs * 1.6) / 9.8 = 20 pounds.
The mass will always be the same no matter what planet you’re on, so it’s still 54 kg.
Answer:(a) 4775.2Hz (b) 4.06m/s (c) 19382.15m/s²
Explanation: Given that the frequency of oscilation f, is 760Hz and the maximum displacement x, is 0.85mm= 0.00085m
(a) Angular frequency w= 2πf
w= 2π × 760 = 4775.2Hz
(b) Maximum speed v is given as the product of angular frequency and maximum displacement
V=wx
V= 4775.2 × 0.00085
V= 4.06m/s
(c) The maximum acceleration a
= w²x
= (4775.2)² × (0.00085)
a= 19382.15m/s².