A = 94.22 Newtons
b = 58.16 kg
Gravity on the moon is 1.62 m/s^2
Magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point specified by both direction and a magnitude. So uniform magnetic field has equal amount of force or magnetic force in both side of the object while the non uniform magnetic field has one of the object exert more than the other
Answer:
W = 3/2 n (T₁- T₂)
Explanation:
Let's use the first law of thermodynamics
ΔE = Q + W
in this case the cylinder is insulated, so there is no heat transfer
ΔE = W
internal energy can be related to the change in temperature
ΔE = 3/2 n K ΔT
we substitute
3/2 n (T₂-T₁) = W
as the work is on the gas it is negative
W = 3/2 n (T₁- T₂)
Answer:
Yes both = and - g can be felt by a rider in a roller coaster.
Explanation:
It is crucial to understand how we feel gravity in this case.
We humans have no sensory organs to directly detect magnitude and direction like some birds and other creatures, but then how do we we feel gravity?
When we stand on our feet we feel our weight due to the normal reaction of floor on our feet trying to keep us stand and our weight trying to crush us down. In an elevator we feel difference in our weight (difference magnitudes of gravity) but actually we are feeling the differences in normal reactions under different accelerations of the elevator.
In the case of roller coaster you will feel +g as you sit on a chair in it, but will feel -g when you are in upside down position as roller coaster move.
When you are seated you will feel the normal reaction of seat on you giving you the feeling +g and the support of the buckles to stay in the roller coaster when you are upside down will give you the -g feeling.
<u>This is just the physics approach</u>, a biological approach can be given in association with sensors relating to ears.
To solve this problem it is necessary to apply the concepts related to the described wavelength through frequency and speed. Mathematically it can be expressed as:

Where,
Wavelength
f = Frequency
v = Velocity
Our values are given as,

Speed of sound
Keep in mind that we do not use the travel speed of the ambulance because we are in front of it. In case it approached or moved away we should use the concepts related to the Doppler effect:
Replacing we have,


Therefore the frequency that you hear if you are standing in from of the ambulance is 0.1214m