Answer:
a) 1.725*10^5 N
b) 3.83*10^3 N
c) i) 173.24 kN
c) ii) 4.57 kN
Explanation:
See the attachment for calculations
In calculating the energy of a photon of light, we need the relationship for energy and the frequency which is expressed as:
E=hv
where h is the Planck's constant (6.626 x 10-34 J s)and v is the frequency.
E = 6.626 x 10-34 J s (<span>7.33 x 10^14 /s) = 4.857 x 10^-19 J</span>
Answer:
1.08 s
Explanation:
From the question given above, the following data were obtained:
Height (h) reached = 1.45 m
Time of flight (T) =?
Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:
Height (h) = 1.45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1.45 = ½ × 9.8 × t²
1.45 = 4.9 × t²
Divide both side by 4.9
t² = 1.45/4.9
Take the square root of both side
t = √(1.45/4.9)
t = 0.54 s
Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).
Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:
Time (t) taken to reach the height = 0.54 s
Time of flight (T) =?
T = 2t
T = 2 × 0.54
T = 1.08 s
Therefore, it will take the kangaroo 1.08 s to return to the earth.
Answer:
These energy exchanges are not changes in kinetic energy. They are changes in bonding energy between the molecules. If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance.
Answer:
it must be possible to prove it wrong
Explanation: