Answer:
n=6.56×10¹⁵Hz
Explanation:
Given Data
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
To find
Revolutions per second
Solution
Let F be the force of attraction
let n be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by
F=mω²r......................where ω=2π n
F=m4π²n²r...............eq(i)
as the values given where
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
we have to find n from eq(i)
n²=F/(m4π²r)
Answer:
a) = 928 J
, b)U = -62.7 J
, c) K = 0
, d) Y = 11.0367 m, e) v = 15.23 m / s
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
= ½ k x²
= ½ 2900 0.80²
= 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
U = m h and
U = 8 9.8 (-0.80)
U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
K = ½ m v²
K = 0
d) write the energy at two points, maximum compression and maximum height
Em₀ = ke = ½ m x²
= mg y
Emo =
½ k x² = m g y
y = ½ k x² / m g
y = ½ 2900 0.8² / (8 9.8)
y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
Y = y- 0.80
Y = 11.8367 -0.80
Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
Emo = ½ k x² = 928 J
= ½ m v²
Emo =
Emo = ½ m v²
v =√ 2Emo / m
v = √ (2 928/8)
v = 15.23 m / s
Answer:
this is what popped up when I searched it up:In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Explanation:
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.