Since the object is dropped from some height so its initial speed must be zero
acceleration of the object is due to gravity
so we can use kinematics to find the time it will take to drop by x = 22 m



Now the speed after 2.12 s will be given as



so above is the speed and time
Answer:
Faraday's law
, he direction of the magnetic field changes by 180º, in the polarity inversion processes, induces a voltage.
Explanation:
For this exercise let's use Faraday's law
E = - dФ / dt
Ф = B.A = B A cos θ
where B is the magnetic field, A is the area and θ is the angle between the field line and the normal to the area.
We can see that an electromotive force (voltage) is indexed when there is a variation of the field B, a variation of the area and change of the angle or when there is a combinational of them.
In this case, the magnitude of the field is constant, as the wire is rigid metal, the area is constant, but the direction of the magnetic field changes by 180º, in the polarity inversion processes, for which reason each change induces a voltage.
If a voltage is created in the ring, which has a resistance, a current is also generated in it.
Therefore the answer is If a current is created in the hoop
I think that ball a hit the ground because it says that it went straight down.
Is proportional to the CHANGE.
hope this helps
Answer:
Option B. 3.0×10¯¹¹ F.
Explanation:
The following data were obtained from the question:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
The capacitance, C of a capacitor is simply defined as the ratio of charge, Q on either plates to the potential difference, V between them. Mathematically, it is expressed as:
Capacitance (C) = Charge (Q) / Potential difference (V)
C = Q/V
With the above formula, we can obtain the capacitance of the parallel plate capacitor as follow:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
C = Q/V
C = 3.0×10¯⁹ / 100
C = 3.0×10¯¹¹ F.
Therefore, the capacitance of the parallel plate capacitor is 3.0×10¯¹¹ F.