1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
11

Is james west still alive?

Physics
2 answers:
mafiozo [28]3 years ago
8 0
Greetings


and james west is ALIVE

Troyanec [42]3 years ago
4 0
Yes he is alive and is 86 years old.

You might be interested in
A block, M1=10kg, slides down a smooth, curved incline of height 5m. It collides elastically with another block, M2=5kg, which i
erma4kov [3.2K]

Answer:

2.86 m

Explanation:

Given:

M₁ = 10 kg

M₂ = 5 kg

\mu_k = 0.5

height, h = 5 m

distance traveled, s = 2 m

spring constant, k = 250 N/m

now,

the initial velocity of the first block as it approaches the second block

u₁ = √(2 × g × h)

or

u₁ = √(2 × 9.8 × 5)

or

u₁ = 9.89 m/s

let the velocity of second ball be v₂

now from the conservation of momentum, we have

M₁ × u₁ = M₂ × v₂

on substituting the values, we get

10 × 9.89 = 5 × v₂

or

v₂ = 19.79 m/s

now,

let the velocity of mass 2 when it reaches the spring be v₃

from the work energy theorem,  we have

Work done by the friction force = change in kinetic energy of the mass 2

or

0.5\times5\times9.8\times2 = \frac{1}{2}\times5\times( v_3^2-19.79^2)

or

v₃ = 20.27 m/s

now, let the spring is compressed by the distance 'x'

therefore, from the conservation of energy

we have

Energy of the spring =  Kinetic energy of the mass 2

or

\frac{1}{2}kx^2=\frac{1}{2}mv_3^2

on substituting the values, we get

\frac{1}{2}\times250\times x^2=\frac{1}{2}\times5\times20.27^2

or

x = 2.86 m

8 0
3 years ago
Explain, using the kinetic theory of matter, why liquids and solids are more denser than gases
AlekseyPX
Solid and liquids are much more denser than gas because their molecules are close to each other and with that the molecules of them can't move that freely unlike the gas molecules. Also, because of being near to each other the molecules of solid and liquids became heavy making them dense.
5 0
3 years ago
The objective lens of a microscope has a focal length of 5.5mm. Part A What eyepiece focal length will give the microscope an ov
son4ous [18]

Complete Question

The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .

What eyepiece focal length will give the microscope an overall angular magnification of 300?

Answer:

The  eyepiece focal length is  f_e  = 0.027 \ m

Explanation:

From the question we are told that

    The focal length is  f_o =  5.5 \ mm =  -0.0055 \ m

This negative sign shows the the microscope is diverging light

     The  angular magnification is m = 300

     The  distance between the objective and the eyepieces lenses is  Z =  19 \ cm  = 0.19 \ m

Generally the magnification is mathematically represented as

        m  =  [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ]

Where f_e is the eyepiece focal length of the microscope

  Now  making f_e the subject  of the formula

         f_e  = \frac{Z}{1 - [\frac{M  *  f_o }{0.25}] }

substituting values

        f_e  = \frac{ 0.19 }{1 - [\frac{300  *  -0.0055 }{0.25}] }

         f_e  = 0.027 \ m

     

5 0
3 years ago
Two long parallel wires are separated by 6.0 mm. The current in one of the wires is twice the other current. If the magnitude of
lions [1.4K]

Answer:

Explanation:

Magnitude of force per unit length of wire on each of wires

= μ₀ x 2 i₁ x i₂ / 4π r    where i₁ and i₂ are current in the two wires , r is distance between the two and  μ₀ is permeability .

Putting the values ,

force per unit length = 10⁻⁷ x 2 x i x 2i / ( 6 x 10⁻³ )

= .67 i² x 10⁻⁴

force on 3 m length

= 3 x .67 x 10⁻⁴ i²

Given ,

8 x 10⁻⁶ = 3 x .67 x 10⁻⁴ i²

i²  = 3.98 x 10⁻²

i = 1.995 x 10⁻¹

= .1995

=  0.2 A approx .

2 i = .4 A Ans .

6 0
3 years ago
Why doesn't the same amount of oil exerts always the same pressure at the bottom of a container of any shape?
Amanda [17]

This is a good question. The short (but less satisfying) answer is: "because the hydrostatic pressure of oil at a certain depth depends on the height of the oil level, measured from that point." So, you can have a tiny amount of oil but arranged in a column that makes it very tall/high and get high pressure, and have same amount of oil spread so that the height is negligible to produce a negligible amount of pressure. The exact formula for pressure is P=r*h*g    (r stands for the liquid density, h for height, and g for gravitational acceleration).

The long answer, but much more satisfying, goes through the derivation of this formula. I recommend searching for a good video explaining hydrostatic pressure. (I can't post links).

3 0
3 years ago
Other questions:
  • Explain how energy is conserved when nuclear fission or fusion occurs
    7·2 answers
  • What is the chemical formula for mercury(I) nitrate? Hgmc021-1.jpg(NOmc021-2.jpg) Hg(NOmc021-3.jpg)mc021-4.jpg Hgmc021-5.jpg(NOm
    11·2 answers
  • Explain why decomposition use solar energy?
    5·1 answer
  • Why is it that the two possible faults with inductors are short circuit and open circuit?
    6·1 answer
  • with the height being 10 m tall how much kinetic energy will a device have to cancel assuming the device weighs 2 kg?
    8·1 answer
  • hi im learning about zodiac sign can u share urs and what are some things u like to do im a aquarius i play vollyball and sing t
    7·1 answer
  • The force required to maintain an object at a constant speed while on frictionless ice is
    11·1 answer
  • Answer pls!!
    12·1 answer
  • A ball starts from rest and rolls down a hill at a constant acceleration of 5 m/s2. If it travels for 8 m how fast is it going i
    9·1 answer
  • The magnitude of the force associated with the gravitational field is constant and has a value f. A particle is launched from po
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!