It goes through your left atrium and right atrium
Answer: see the graph attached (straight line, passing through the origin and positive slope).
Justification:1)
Kinetic energy and temperature are in direct proportion. That means:
i) Being kinetic energy y and temperature x:
y α xii) That implies:
y = kx,where k is the constant of proportionality.
iii) The graph is a
line that passes through the origin and has positive slope k (k = y / x).2) The proportional relationship between kinetic energy (KE) and temperature (T) is shown by the
Boltzman law, which states:
Average KE = [3 / 2] KT, where K is Boltzman's constant, whose graph is of the form shown in the figure attached.
(amount of heat)Q = ? , (Mass) m= 4 g , ΔT = T f - T i = 180 c° - 20 °c = 160 °c ,
Ce = 0.093 cal/g. °c
Q = m C ΔT
Q = 4 g × 0.093 cal/g.c° × ( 180 °c- 20 °c )
Q= 4×0.093 × 160
Q = 59.52 cal
I hope I helped you^_^
Answer:
True
Explanation:
East, up, and left all define as a direction.
Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s