1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
3 years ago
5

Communicate is 25 a multiple of 2 or 5 ? how do you know?

Physics
1 answer:
PIT_PIT [208]3 years ago
6 0
It's a multiple of 5 because you can't multiply anything by 2 and get 25
You might be interested in
A man standing on a bus remains still when the bus is at rest. When the bus moves forward and then slows down the man continues
Stells [14]
C. inertia.  the man is sent flying off the bus because of his weight and the sudden stop of the bus. this effect is called inertia. an example of gravity would be throwing an apple up and having it come to the ground. an example of weight would be putting a man and an elephant on a scale and having the elephant come down while the man goes up.
6 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Find the moment of inertia Ihoop of a hoop of radius r and mass m with respect to an axis perpendicular to the hoop and passing
Juliette [100K]

Answer: MR²

is the the moment of inertia  of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center

Explanation:

Since in the hoop , all mass elements  are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.

I = ∫ r² dm

= R²∫ dm

MR²

where M is total mass and R is radius of the hoop .

3 0
3 years ago
A bullet is fired horizontally from a 17.7 m high cliff at a speed of 482.0. What is the distance from the cliff that the bullet
Marysya12 [62]

Answer:

Horizontal distance=?m

Explanation:

Horizontal velocity,u=482ms⁻¹

Height of the cliff=17.7m

Horizontal distance,R=?

R=v×√2h/g

5 0
3 years ago
It is determined that a certain wave of infrared light has a wavelength of 8.45 mm. Given that c=2.99 ×108 m/s, what is the freq
irina [24]

Answer:

The frequency of infrared wave is 35.385 GHz

Explanation:

Given data:

Wavelength of infrared light = 8.45 mm = 8.45 x 10^{-3} m

Velocity of infrared light = 2.99 x 10^{8} m/s

To find: frequency of the infrared wave = ?

We know that the wavelength and frequency are inversely proportional and the formula to derive frequency with velocity and wavelength is:

c = μλ, where

c is velocity of light

μ is frequency of light

λ is wavelength of light

Hence the frequency of light  μ = c/λ

                                                     = \frac{2.99 x 10^{8} m/s }{8.45 x 10^{-3}m }

                                                     = \frac{299}{8.45} x 10^{9} s^{-1}

                                                     =  35.385  x  10^{9} Hz   (since 1 s^{-1} = 1 Hz)

                                                     = 35.385 GHz

6 0
3 years ago
Read 2 more answers
Other questions:
  • 8. If a circuit has a current of 25.4 amps with 12.6
    8·1 answer
  • After Moseley's discovery in 1913, the periodic law stated that physical and chemical properties tend to repeat periodically whe
    6·1 answer
  • A girl pulls a sled with a force of 15 N over a distance of 3 m. What is the kinetic energy of the sled after she pulls it? Assu
    15·2 answers
  • A toxin that inhibits the production of gtp would interfere with the function of a signal transduction pathway that is initiated
    5·1 answer
  • An automobile tire is rated to last for 60,000 miles. to an order of magnitude, through how many revolutions will it turn?
    11·1 answer
  • 1) Halving the distance (i.s., decreasing by a factor of two) between two charged objects will cause the electrical force betwee
    8·1 answer
  • A balloon is filled with water. The balloon is heated and begins to expand. The water inside begins to turn into steam. What wil
    12·2 answers
  • Sports managers have the potential to earn more than a million dollars per year.<br> True<br> false
    9·1 answer
  • How much force is needed to keep the bowling ball moving towards the pins once it has
    5·1 answer
  • A proton moves a distance 10 cm in a uniform electric field of 3.5 kN C, in the direction of the field.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!