If the impulse is 25 N-s, then so is the change in momentum.
The mass of the ball is extra, unneeded information.
Just to make sure, we can check out the units:
<u>Momentum</u> = (mass) x (speed) = <u>kg-meter / sec</u>
<u>Impulse</u> = (force) x (time) = (kg-meter / sec²) x (sec) = <u>kg-meter / sec</u>
Answer:
T/√8
Explanation:
From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.
For planet A, period = T and radius = 2R.
For planet B, period = T' and radius = R.
So, T²/R³ = k
So, T²/(2R)³ = T'²/R³
T'² = T²R³/(2R)³
T'² = T²/8
T' = T/√8
So, the number of hours it takes Planet B to complete one revolution around the star is T/√8
A light goes out when you turn off the wall switch because <u />B. the switch causes a break in the circuit.
Since there is a break in the circuit, electricity cannot come through to the bulb, which is why there is no light anymore.
y = 75.9 m
Explanation:
y = -(1/2)gt^2 + v0yt + y0
If we put the origin of our coordinate system at the point where a body is launched, then y0 = 0.
y = -(1/2)(9.8 m/s^2)(3 s)^2 + (40 m/s)(3 s)
= -44.1 m + 120 m
= 75.9
I don't really know the answer but maybe north pole and south pole?