R is proportional to the length of the wire:
R ∝ length
R is also proportional to the inverse square of the diameter:
R ∝ 1/diameter²
The resistance of a wire 2700ft long with a diameter of 0.26in is 9850Ω. Now let's change the shape of the wire, adding and subtracting material as we go along, such that the wire is now 2800ft and has a diameter of 0.1in.
Calculate the scale factor due to the changed length:
k₁ = 2800/2700 = 1.037
Scale factor due to changed diameter:
k₂ = 1/(0.1/0.26)² = 6.76
Multiply the original resistance by these factors to get the new resistance:
R = R₀k₁k₂
R₀ = 9850Ω, k₁ = 1.037, k₂ = 6.76
R = 9850(1.037)(6.76)
R = 69049.682Ω
Round to the nearest hundredth:
R = 69049.68Ω
Answer:
2.72*10-3 Joules
Explanation:
From Newton's second law of motion
F=ma

given


the angular velocity is



Answer:
a.
W
Explanation:
= temperature of the surface of sun = 5800 K
= Radius of the Sun = 7 x 10⁸ m
= Surface area of the Sun
Surface area of the sun is given as

= Emissivity = 1
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴
Using Stefan's law, Power output of the sun is given as

Correct answer choice is:
C. Volley principle (FREQUENCY MATCHING)
Explanation:
Volley theory declares that groups of neurons of the hearing rule counter to a noise by firing action potentials imperceptibly out of the stage with one another so that when connected, a higher pulse of sound can be encoded and transmitted to the brain to be examined.
Answer: Option (C) is the correct answer.
Explanation:
When we heat a fluid then the movement within the fluid makes hot (less dense) material to rise and cooler (more denser) material to sink at the bottom. This process is known as convection.
Thus, in the diagram hot (less dense) water will rise and cooler (more dense) water sinks at the bottom.
Therefore, we can conclude that according to the arrow the label belongs to cooler water sinks.