Answer:
Resistance of the circuit is 820 Ω
Explanation:
Given:
Two galvanometer resistance are given along with its voltages.
Let the resistance is "R" and the values of voltages be 'V' and 'V1' along with 'G' and 'G1'.
⇒ 
⇒ 
Concept to be used:
Conversion of galvanometer into voltmeter.
Let
be the resistance of the galvanometer and
the maximum deflection in the galvanometer.
To measure maximum voltage resistance
is connected in series .
So,
⇒ 
We have to find the value of
we know that in series circuit current are same.
For
For 
⇒
equation (i) ⇒
equation (ii)
Equating both the above equations:
⇒
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ Plugging the values.
⇒ 
⇒ 
⇒ 
⇒
The coil resistance of the circuit is 820 Ω .
Answer:
(a) Initial volume will be 7.62 L
(b) Final temperature will be 303.85 K
Explanation:
We have given one mole of ideal gas done 3000 J
So work done W = 3000 J
Let initial volume is
and initial pressure
( As pressure is constant )
Final volume
= 0.025 
Number of moles n = 1
(B) From ideal gas of equation we know that 
So 
T = 303.85 Kelvin
(B) For isothermal process work done is equal to





So initial volume will be 7.62 L
Answer:
6.77 m/s
Explanation:
Acceleration = Force/mass;
The block is accelerated by 13/6.4 m/s^2 for 2.1s from an initial velocity of 2.5m/s.
Applying the equation of motion:
Vf=Vi + at
Where Vf is the final velocity, Vi is the initial velocity, a is the acceleration and t is the time for which the object accelerates.
<h3>Vf= 2.5 + ((13/6.4)*2.1);</h3>
Potential energy = mgh
= 53.5 x 9.8 x 4.7
= 2464.21 Joules