Answer:
F₂ (g) + FeI₂ (aq) → FeF₂ (aq) + I₂ (l)
Explanation:
Our reactants are:
F₂ → Fluorine gas, a dyatomic molecule
FeI₂ → Iron (II) iodine
Our products are:
I₂ → Iodine
FeF₂ → Iron (II) fluoride
Then, the reaction is:
F₂ (g) + FeI₂ (aq) → FeF₂ (aq) + I₂ (l)
We see it is completely balanced.
CO2<span> is a linear molecule and the Oxygen (O) atoms on each end are symmetrical. Polarity results from an unequal sharing of valence electrons. Because of this symmetry there is no region of unequal sharing and </span>CO2<span> is a</span>nonpolar<span> molecule</span>
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.
<span>Answer is: the symbol is Cl.
[Ne ] 3s</span>² 3p⁶ is electric configuration of noble gas argon, neon (Ne) has10 electrons plus 6 electrons in 3s and 3p orbitals. Neutral atom of m<span>onatomic ion that has a charge of 1– has one electron less than argon, so that atom (chlorine) has 17 electrons. Charge of 1- means one electron more for ion: 17 + 1 = 18.
</span>