when liquid water changes into solid ice, it increases in mass
Answer:
Chemical energy.
Explanation:
This is biology btw, not chemistry
4. describe three ways carbon dioxide was removed from the Earth's atmosphere.
Answer: Forests: Photosynthisis helps clear carbon dioxide naturally, Soils naturally store carbon, but agricultural soils are running a big deficit due to intensive use. Because agricultural land is so expansive, Bio-energy with Carbon Capture and Storage (BECCS) is another way to use photosynthesis to combat climate change. However, it is far more complicated than planting trees or managing soils — and it doesn’t always work for the climate.
5. Explain why there is now 21% Oxygen in the Earth's atomosphere compaired to little or no Oxygen in the Earth's atmosphere 4.5 billion years ago.
Answer: cientists believe that the Earth was formed about 4.5 billion years ago. Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence.The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. There were smaller proportions of water vapour, ammonia and methane. As the Earth cooled down, most of the water vapour condensed and formed the oceans.
Sorry its soooo long TwT
+1
Explanation:
To solve this problem, we need to set up an algebraic equation. Let us first understand the meaning of oxidation number.
The oxidation number is the formal charge assigned to an atom present in a molecule or formula unit
The algebraic sum of all oxidation numbers of atoms in an ion containing more than one kind of atom is the charge on the ion.
The algebraic sum of all oxidation number of atoms in a neutral compound is zero;
The radical NO₃ has a formal charge of -1;
let the oxidation number of Li = x
x + (-1) = 0
x = + 1
learn more:
Oxidation number brainly.com/question/10017129
#learnwithBrainly
Since the compound has 1.38 time that of oxygen gas at the same conditions of temperature and pressure, we have the relationship:
MW/MWoxygen = 1.38
MW = 44.16
Since there is water formed during the reaction, the formula of the compound must be:
XaHb
where a and b are the coefficients of each element.
If the compound reactions with oxygen forming water and an oxide of the element X, the combustion reaction must be:
XaHb + ((2a + (b/2))/2) O2 = a (XO2) + (b/2)(H2O)
Using dimensional analysis:
10 (1/44.16) (b/2 / 1) (18) = 16.3
Solving for b:
b = 8
The compound now is XaH8. Most probably, the compound is C3H8 since it has a molecular formula of 44 and it reacts with O2 to form water and CO2.