Answer:
She will make the jump.
Explanation:
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
First we will consider horizontal motion of stunt women
Displacement = 77 m, Initial velocity = 28 cos 15 = 27.05 m/s, acceleration = 0
Substituting

So she will cover 77 m in 2.85 seconds
Now considering vertical motion, up direction as positive
Initial velocity = 28 sin 15 = 7.25 m/s, acceleration =acceleration due to gravity = -9.8
, time = 2.85
Substituting

So at time 2.85 stunt women is 10.11 m below from starting position, far side is 25 m lower. So she will be at higher position.
So she will make the jump.
Here we can use momentum conservation as in this type of collision there is no external force on it

now here we can say




now here we can say


now by coefficient of restitution
for elastic collision we know that e = 1


now by solving the two equation


also we know that

so final speed of the nail is 6.875 m/s
Answer:
Kinetic Energy.
Explanation:
The movement of a roller coaster is accomplished by the conversion of potential energy to kinetic energy. The roller coaster cars gain potential energy as they are pulled to the top of the first hill. As the cars descend the potential energy is converted to kinetic energy.
amnesia is the most common illness used in tv an films
Let say the point is inside the cylinder
then as per Gauss' law we have

here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as


now using the equation of Gauss law we will have


now we will have

Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder


now using the equation of Gauss law we will have


now we will have