1. neutral particles (neutrons) are in the nucleus
2. nucleus is in the nucleus
3. electron cloud is in the electron cloud
4. positively charged particles (protons) are in the nucleus
5. negatively charged particles (electrons) are in the electron cloud
(100, 108)
Due to
1.2x90=108
100, 108
Answer:
238.75⁰C .
Explanation:
coefficient of linear thermal expansion of aluminum and steel is 23 x 10⁻⁶ K⁻¹ and 12 x 10⁻⁶ K⁻¹ respectively .
Rise in temperature be Δ t .
Formula for linear expansion due to heat is as follows
l = l₀ ( 1 + α x Δt )
l is expanded length , l₀ is initial length , α is coefficient of linear expansion and Δt is increase in temperature .
For aluminum
l = 2.5 ( 1 + 23 x 10⁻⁶ Δt )
For steel
l = 2.506 ( 1 + 12 x 10⁻⁶ Δt )
Given ,
2.5 ( 1 + 23 x 10⁻⁶ Δt ) = 2.506 ( 1 + 12 x 10⁻⁶ Δt )
1 + 23 x 10⁻⁶ Δt = 1.0024 ( 1 + 12 x 10⁻⁶ Δt )
1 + 23 x 10⁻⁶ Δt = 1.0024 + 12.0288 x 10⁻⁶ Δt
10.9712 x 10⁻⁶ Δt = .0024
Δt = 218.75
Initial temperature = 20⁰C
final temperature = 218.75 + 20 = 238.75⁰C .
Answer:
a)
, b) 
Explanation:
The problem is asking the rocket velocity and acceleration at t = 6 s.
a) The general equation of the rocket is:



b) The acceleration experimented by the rocket is:



Answer:
115 m/s, 414 km/hr
Explanation:
There are two forces acting on a skydiver: gravity and air resistance (drag). At terminal velocity, the two forces are equal and opposite.
∑F = ma
D − mg = 0
D = mg
Drag force is defined as:
D = ½ ρ v² C A
where ρ is the fluid density,
v is the velocity,
C is the drag coefficient,
and A is the cross sectional surface area.
Substituting and solving for v:
½ ρ v² C A = mg
v² = 2mg / (ρCA)
v = √(2mg / (ρCA))
We're given values for m and A, and we know the value of g. We need to look up ρ and C.
Density of air depends on pressure and temperature (which vary with elevation), but we can estimate ρ ≈ 1.21 kg/m³.
For a skydiver falling headfirst, C ≈ 0.7.
Substituting all values:
v = √(2 × 80.0 kg × 9.8 m/s² / (1.21 kg/m³ × 0.7 × 0.140 m²))
v = 115 m/s
v = 115 m/s × (1 km / 1000 m) × (3600 s / hr)
v = 414 km/hr