Answer:
= 7.02 ° C
Explanation:
The liquid water gives heat to melt the ice (Q₁) maintaining the temperature of 0 ° C and then the two waters are equilibrated to a final temperature.
Let's start by calculating the heat needed to melt the ice
Q₁ = m L
Q₁ = 0.090 3.33 10⁵
Q₁ = 2997 10⁴ J
This is the heat needed to melt all the ice
Now let's calculate at what temperature the water reaches when it releases this heat
Q = M
(T₀ -
)
Q₁ = Q
= T₀ - Q₁ / M 
= 20.0 - 2997 104 / (0.600 4186)
= 20.0 - 11.93
= 8.07 ° C
This is the temperature of the water when all the ice is melted
Now the two bodies of water exchange heat until they reach an equilibrium temperature
Temperatures are
Water of greater mass T₀₂ = 8.07ºC
Melted ice T₀₁ = 0ºC
M
(T₀₂ -
) = m
(
- T₀₁)
M T₀₂ + m T₀₁ = m
+ M 
= (M T₀₂ + 0) / (m + M)
= M / (m + M) T₀₂
let's calculate
= 0.600 / (0.600 + 0.090) 8.07
= 7.02 ° C
Explanation:
mass of earth (m1)=5.97×10^24
mass of moon (m2)=7.35×10^22
distance between their center (d)= 3.84×10^8
G=6.67×10^-11
now,
gravitational force =(F)= G(m1×m2)/d²
- 6.67×10^-11(5.97×10^24×7.35×10^22)/(3.84×10^8)
- 19.84×10^19
<h3>stay safe healthy and happy...</h3>
Answer:
Part a)
f = 371.1 Hz
Part b)
f = 417.7 Hz
Part c)
beat frequency = 46.6 Hz
Explanation:
Part a)
Due to doppler's Effect the frequency of the sound heard by the train which is moving away from the observer is given as



Part b)
Now from the second train which is approaching the person we can say



Part c)
As we know that beat frequency is the difference in the frequency from two sources


Answered using calculus.
Antidifferentiated the acceleration to get velocity. Added variable c as we do not know if there was an extra number there yet.
Knowing that when time is 0, the velocity is 20, we can substitute those numbers into the equation and find that c = 20.
Now we have full velocity equation: v = 1.5t + 20
Now we substitute 4 into t to find out the velocity after 4 seconds. This gives us the final answer of 26m/s