8.50 moles is equal to 5.1187×10²⁴ atoms of Ca.
<u>Explanation:</u>
We have to multiply the moles of Ca by the Avogadro's number:
= 6.022×10²³
So the number of atoms:
= 8.5 moles × 6.022×10²³atoms / mol
= 5.1187×10²⁴ atoms
Hence the 8.50 moles is equal to 5.1187×10²⁴ atoms of Ca.
Answer:
2269.43 mL
Explanation:
⋆✨ANSWERED BY KAKASHI ʕ•㉨•ʔ✨⋆
✨BRAINLIEST WILL BE APPRECIATED✨
✨IF YOU HAVE ANY OTHER QUESTIONS ASK IN THE COMMENT BOX✨
Answer:
The four resonance structures of the phenoxide ion are shown in the image attached
The conjugate base of cyclohexanol has only one resonance contributor, while
the conjugate base of phenol has four resonance contributors.
Explanation:
In organic chemistry, it is known that structures are more stable if they possess more resonance contributors. The greater the number of contributing canonical structures, the more stable the organic specie. Since the phenoxide ion has four contributing canonical structures, it is quite much more stable than cyclohexanol having only one contributing structure to its conjugate base. Hence the PKa(acid dissociation constant) of phenol is lesser than that of cyclohexanol. The conjugate base of phenol is stabilized by resonance.
Answer:
Option 4 ) 1-butyne
Explanation:
In organic chemistry, you should use IUPAC convention in order to name an organic compound. First of all, you should identify the lenght of the organic chain, for this case, you have 5 C atoms, but in fact, you have a triple bond (which would be a substitute: ethynil-) as a substitute, so the main skeleton would have 4 C atoms (a butane)
Then, you start by numbering carbon N° 1 as the one that has the substitute (triple bound)-starting from the right, it would be the second C):
CH₃-CH₂-CH₂-C≡CH
Which will finally leads us to 1-butyne
<span>Sulfur Hexachloride
SCl6 So now we count the number of valence electrons each has by seeing what column it's in, (1-8) not counting the columns of the transition metals.
Since Sulfur is in the 6th and Chlorine is in the 7th, and there are 6 chlorines, we can add up all their valence electrons:
6*1+7*6=48 valence electrons.
But remember that electrons come in pairs, either in bonds or as lone pairs. So I usually divide the valence electron number by 2 and just think about placing pairs. It's up to you, but I think it's convenient since we can count "1" in our mind each time we place a bond or a electron pair. So we need to place 24 pairs/bonds.
So we can guess that sulfur is a central atom and draw out a bond from sulfur to each chlorine. Since Sulfur is in the 3rd row it can use d-orbitals to break the octet rule. So when we bond all the chlorines onto sulfur we get:
(see the figure)
and
</span><span>So we made 6 bonds, that means we used up 12 electrons, so if you're counting (AND YOU SHOULD BE!) you have 36 electrons or simply 18 electron pairs left to place. Now let's give chlorine a neutral charge.</span>