Answer:
Option A
Step-by-step explanation:
Convert mixed fraction to improper fraction.

Now isolate 'w'

Let "c" and "q" represent the numbers of bottles of Classic and Quantum that should be produced each day to maximize profit. The problem conditions give rise to 3 inequalities:
.. 0.500c +0.550q ≤ 100 . . . . . . . liters of water
.. 0.600c +0.200q ≤ 100 . . . . . . . kg of sugar
.. 0.1c +0.2q ≤ 32 . . . . . . . . . . . . . grams of caramel
These can be plotted on a graph to find the feasible region where c and q satisfy all constraints. You find that the caramel constraint does not come into play. The graph below has c plotted on the horizontal axis and q plotted on the vertical axis.
Optimum production occurs near c = 152.17 and q = 43.48. Examination of profit figures for solutions near those values reveals the best result for (c, q) = (153, 41). Those levels of production give a profit of 6899p per day.
To maximize profit, Cartesian Cola should produce each day
.. 153 bottles of Classic
.. 41 bottles of Quantum per day.
Profit will be 6899p per day.
_____
The problem statement gives no clue as to the currency equivalent of 100p.
(14 over 5) · (15 over 5)
= 14·13·12·11·10/5! · 15·14·13·12·11/5!
= 6012006
(n over k) is the Binomial coefficient
Answer:
deez biscuts eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Step-by-step explanation:
A)
Let x represent the cost of 1 student, and y the cost of 1 teacher.
B)
In the first group, there's 25 students and 2 teachers. Their total cost is $97.50
So 25x + 2y = 97.50
In the second group, there's 32 students and 3 teachers. Their total cost is $127
So 32x + 3y = 127
We get the following system of equations:
25x + 2y = 97.50 (1)
32x + 3y = 127 (2)
C)
25x + 2y = 97.50 (1)
32x + 3y = 127 (2)
In equation (1)
25x + 2y = 97.50
25x + 2y - 2y = 97.50 - 2y
25x = 97.50 - 2y
25x / 25 = 97.50/25 - 2y/25
x = 3.9 - (2/25)y
In equation (2), let's replace x by its algebraic value
32x + 3y = 127
32(-2/25y + 3.9) + 3y = 127
11/25y + 124.8 = 127
11/25y + 124.8 - 124.8 = 127 - 124.8
11/25y = 2.2
(11/25y) / (11/25) = 2.2 / (11/25)
y = 5
x = -2/25y + 3.9
x = -2/25 * 5 + 3.9
x = 3.5
So the cost of each student is $3.5, and the cost of each teacher is $5.
Hope this helps! :)