Answer:
ω' = 2.5 rad/s
Explanation:
mass of cockroach, m = 4 kg
mass of disk, M = 6 kg
Radius of disc= R
initial angular velocity, ω = 2 rad/s
Let the final angular velocity is ω'
As no external torque is applied, so the angular momentum is constant.
Angular momentum = Moment of inertia x angular velocity
I ω = I' ω'


ω' = 2.5 rad/s
Answer:
Sometimes atoms gain or lose electrons. The atom then loses or gains a "negative" charge. These atoms are then called ions. Positive Ion - Occurs when an atom loses an electron negative charge it has more protons than electrons.
Explanation:
:)
Answer:
Explanation:
Angular velocity of satellite
= 2π x .01
= .02 π rad /s
Initial angular momentum
Moment of inertia x angular velocity
= 2000 x .02 π
= 125.6 unit
Linear impulse produced by each thruster
= 15 N.s
Angular impulse
= 15 x 1.5 = 22.5 unit
Total angular impulse in 30 pulses
= 22.5 x 2 x 30
1350
This angular impulse will add total angular momentum of
1350 unit
So total angular momentum after 30 pulses
= 1350 + 22.5
= 1372.5 unit
So final angular velocity
= final angular momentum / moment of inertia
= 1372.5 / 2000
= 0 .686 rad /s
Answer: 
Explanation:
Given
Length of the race track 
the radius of curvature of the track 
time taken to run on track is 
Speed of runner is

Centripetal acceleration is

Answer:
The value of mass 1, m1= 6/5m
The value of mass 2, m2= 3/5m
Explanation:
case 1:
here tension and the acceleration will be:
for m1;
- mg-T=ma
- 2mg - 2T = 2ma .....1.
for m2:
adding the both equations,
2mg - 2T + 2T-mg = 2ma + ma/2
a = 2/5 g
putting the value of a into the equation 1.
mg - T = m* (2/5)g
T = 3/5 ( mg )
now
case 2:
The two identical blocks are released from the rest, the tension remains the same as the case 1.
so,
for m1:
for m2:
adding both equations we get,
2T-m2g + 2m2g - 2T = 0
m2 = m1 / 2
T = m1*g / 2
here we know that
T (case1) = T (case2)
3/5 ( mg ) = m1*g / 2
m1 = 6/5 m
hence
m2 = 3/5 m
learn more about tension here:
<u>brainly.com/question/23590078</u>
<u />
#SPJ4