Answer:
hi apner how is ur going for the weekend on your way home
Explanation:
hi there is that something you could help me
Answer:
Volt
Explanation:
Voltage is what makes electric charges move. ... Voltage is also called, in certain circumstances, electromotive force (EMF). Voltage is an electrical potential difference, the difference in electric potential between two places. The unit for electrical potential difference, or voltage, is the volt.
The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces in the conductor a current of one ampere, the conductor not being the seat of any electromotive force.
The coulomb (symbolized C) is the standard unit of electric charge in the International System of Units (SI). ... In terms of SI base units, the coulomb is the equivalent of one ampere-second. Conversely, an electric current of A represents 1 C of unit electric charge carriers flowing past a specific point in 1 s.
An ampere is a unit of measure of the rate of electron flow or current in an electrical conductor. One ampere of current represents one coulomb of electrical charge (6.24 x 1018 charge carriers) moving past a specific point in one second.
Answer:
ma = 48.48kg
Explanation:
To find the mass of the astronaut, you first calculate the mass of the chair by using the information about the period of oscillation of the empty chair and the spring constant. You use the following formula:
(1)
mc: mass of the chair
k: spring constant = 600N/m
T: period of oscillation of the chair = 0.9s
You solve the equation (1) for mc, and then you replace the values of the other parameters:
(2)
Next, you calculate the mass of the chair and astronaut by using the information about the period of the chair when the astronaut is sitting on the chair:
T': period of chair when the astronaut is sitting = 2.0s
M: mass of the astronaut plus mass of the chair = ?
(3)
Finally, the mass of the astronaut is the difference between M and mc (results from (2) and (3)) :

The mass of the astronaut is 48.48 kg
Answer:
We know that Force = mass × acceleration
By substituting the values we get,
30 N = 15 kg × a (where a is acceleration)
Or we can write it as
15 kg × a = 30 N
Transposing 15 to RHS,
a = 30 ÷ 15 m/s²
Therefore, acceleration = 2 m/s²
pls give brainliest for the answer
3. Law: Every action has a reaction equal in magnitude and opposite in direction.