Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Vol of sphere = 4/3 pi r^2.density of sphere = mass/volume.mass = densityxvolumesphere 1. mass = density x 4/3 pi 4.5^2sphere 2 5mass = density x 4/3 pi r^25=4/3 pi r^2 divided by 4/3 pi 4.5^25=r^2 divided by 4.5^25x4.5^2=r^2root(5x4.5^2)=r4.5 root 5 = r
Solve the following word problems.
1. The ratio of red marbles and blue marbles that Carlo has is 8: 3. When he
exchanged 35 red marbles for 20 blue marbles from his brother, he was left with
equal number of red and blue marbles.
How many red and blue marbles did he have at the beginning
How many red and blue marbles did he have now
Answer:
Explanation:
Given that,
First Capacitor is 10 µF
C_1 = 10 µF
Potential difference is
V_1 = 10 V.
The charge on the plate is
q_1 = C_1 × V_1 = 10 × 10^-6 × 10 = 100µC
q_1 = 100 µC
A second capacitor is 5 µF
C_2 = 5 µF
Potential difference is
V_2 = 5V.
Then, the charge on the capacitor 2 is.
q_2 = C_2 × V_2
q_2 = 5µF × 5 = 25 µC
Then, the average capacitance is
q = (q_1 + q_2) / 2
q = (25 + 100) / 2
q = 62.5µC
B. The two capacitor are connected together, then the equivalent capacitance is
Ceq = C_1 + C_2.
Ceq = 10 µF + 5 µF.
Ceq = 15 µF.
The average voltage is
V = (V_1 + V_2) / 2
V = (10 + 5)/2
V = 15 / 2 = 7.5V
Energy dissipated is
U = ½Ceq•V²
U = ½ × 15 × 10^-6 × 7.5²
U = 4.22 × 10^-4 J
U = 422 × 10^-6
U = 422 µJ