First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.
Answer:
See the answers below
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
<u>First case</u>
Vf = 6 [m/s]
Vo = 2 [m/s]
t = 2 [s]
![6=2+a*2\\4=2*a\\a=2[m/s^{2} ]](https://tex.z-dn.net/?f=6%3D2%2Ba%2A2%5C%5C4%3D2%2Aa%5C%5Ca%3D2%5Bm%2Fs%5E%7B2%7D%20%5D)
<u>Second case</u>
Vf = 25 [m/s]
Vo = 5 [m/s]
a = 2 [m/s²]
![25=5+2*t\\t = 10 [s]](https://tex.z-dn.net/?f=25%3D5%2B2%2At%5C%5Ct%20%3D%2010%20%5Bs%5D)
<u>Third case</u>
Vo =4 [m/s]
a = 10 [m/s²]
t = 2 [s]
![v_{f}=4+10*2\\v_{f}=24 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D4%2B10%2A2%5C%5Cv_%7Bf%7D%3D24%20%5Bm%2Fs%5D)
<u>Fourth Case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
![v_{f}=5+8*10\\v_{f}=85 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D5%2B8%2A10%5C%5Cv_%7Bf%7D%3D85%20%5Bm%2Fs%5D)
<u>Fifth case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]

Supernova nucleosynthesis is also thought to be responsible for the creation of rarerelements heavier than iron<span> and nickel, in the last few seconds of a type II supernova event.</span>
The coriolis effect is due to the rotation of the earth. Look up youtube videos on it, its pretty cool. If we didn't have coriolis effect then hurricane's wouldn't even form! Also it affects the trajectory of hurricanes. If you look at a path a hurricane takes it always curves quite a bit. That's also because of the coriolis affect. Imagine you're on a merry go round or on some spinning disk. You throw a ball towards the center. The ball will seem to curve away from your target because you're spinning. Now its not because the ball curved and you missed, the ball goes in a straight line but because of the spinning the target you aimed at shifted.
I think comets because they are small and they are composed of ice or water. Hope it helps :)