Answer:
Answer: The solubility of B is high than the solubility of A.
Explanation:
The solubility is defined as the amount of substance dissolved in a given amount of solvent. More the solute gets dissolved, high will be the solubility and less the solute dissolved, low will be the solubility.
Mass of undissolved substance of substance A is more than Substance B at every temperature. This implies that less amount of solute gets dissolved in the given amount of solvent.
Therefore, B has high solubility than substance A.
<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.
Answer:

Explanation:
We are asked to find how much heat a sample of copper absorbs when the temperature is increased.
Since we know the mass, temperature increase, and specific heat capacity, we can use the following formula to calculate heat.

The mass of the copper sample is 100 grams, the temperature is changed or increased by 30.0 degrees Celsius, and the specific heat of copper is 0.39 Joules per gram degrees Celsius.
- m= 100 g
- c= 0.39 J/g °C
- ΔT= 30.0 °C
Substitute the values into the formula.

Multiply the first two values. Note that the units of grams cancel.

Multiply again, this time the units of degrees Celsius cancel.

The copper sample absorbs <u>1170 Joules</u> of heat and <u>Choice B </u>is correct.