They are positively or negatively charged based on their electrical configuration of electrons*
For example an electronic configuration of 2,8,3 would have a negative charge if +3 since it needs to lose 3 electrons to gain the electrical configuration of a noble gas
2,8,1 would have a charge of +1 for the same reason
2,8,6 would be -2 since it is easier to gain 2 electrons that lose 6 electrons
Hope this helped :))
Explanation: We are given three balloon carrying different charges: One having positive charge, one having negative charge and one having no charge.
When we bring positive rod near these three balloons, all of them behave differently.
According to the Coulomb's Law:
Like charges repel each other and unlike charges attract each other.
- When we bring positive rod towards the balloon having positive charge, the balloon will move away from the rod, because like charges repel each other.
- When we bring positive rod near negative balloon, the balloon will be attracted to the rod because unlike charges attract each other.
- But, when we bring positive rod towards the balloon having no charge, the charges will be induced in the balloon. Although the balloon is neutral in nature but it will still carry some +ve or -ve charges. So, when the positive rod is bought near neutral ball, the negative side of the balloon will get attracted towards the rod and positive side will be repelled. From this, we say that the rod has induced some charges in the balloon.
Answer:
5.00 mol Mg
10.0 mol Cl
40.0 mol O
Explanation:
Step 1: Given data
Moles of Mg(ClO₄)₂: 5.00 mol
Step 2: Calculate the number of moles of Mg
The molar ratio of Mg(ClO₄)₂ to Mg is 1:1.
5.00 mol Mg(ClO₄)₂ × 1 mol Mg/1 mol Mg(ClO₄)₂ = 5.00 mol Mg
Step 3: Calculate the number of moles of Cl
The molar ratio of Mg(ClO₄)₂ to Cl is 1:2.
5.00 mol Mg(ClO₄)₂ × 2 mol Cl/1 mol Mg(ClO₄)₂ = 10.0 mol Cl
Step 4: Calculate the number of moles of O
The molar ratio of Mg(ClO₄)₂ to Cl is 1:8.
5.00 mol Mg(ClO₄)₂ × 8 mol O/1 mol Mg(ClO₄)₂ = 40.0 mol O
Nitrogen fixation is the process that makes atmospheric nitrogen available to plants by mutualistic and free-living bacteria. The process is undertaken by the rhizobium bacteria that live in root roots of plants such as legumes. The mutualistic relationship is that the plant supplies the bacteria with a habitat in which to live, water, and nutrients, and the bacteria supply nitrogen for making plant proteins.