Answer:
Specific gravity is the density of asubstance divided by the density of water. Since (at standard temperature and pressure) water has a density of 1 gram/cm3, and since all of the units cancel, specific gravity is usually very close to the same value as density(but without any units).
The correct answer is 0.014467 M.
Molarity is defined as the number of moles present in a liter solution, that is, number of moles / liter solution.
The molar mass of sodium (Na) is 23.0 g/mol
Thus, 1 mole of Na contains 23.0 g
Now, x moles of Na contains 0.50 g
Moles = 0.50 × 1 / 23.0
Moles = 0.50 / 23.0
= 0.0217 moles of Na
Molarity = Number of moles / liters of solution
= 0.0217 / 1.5
= 0.014467 M
Answer:

Explanation:
Let's rewrite the given word equation in its chemical balanced equation representation:
1. Lead(II) nitride is represented by lead, Pb, in an oxidation state of 2+, while nitride is a typical nitrogen anion with a state 3-. As a result, the lowest common multiple between 2 and 3 is 6, meaning 2 lead cations are needed to balance 3 nitrogen anions:
.
2. Ammonium sulfate consists of an ammonium cation with a 1+ charge and sulfate anion with a 2- charge, two ammonium cations needed:
.
3. Lead(II) sulfate would have one lead cation and one sulfate anion, as they have the same magnitude of charges with opposite signs:
.
4. Ammonium nitride would require three amonium cations to balance the nitride anion:
.
Let's write the balanced equation:

The liquid will stop converting into vapor. This process is to balanced the amount of substance of both phases inside the flask.
Using electronegativity difference is a good guide to the ionic/ covalent nature. Large differences indicate greater ionic character, small differences more covalent character. The larger the difference in electronegativity the more ionic properties a bond is said to have. The smaller the difference in electronegativity the more covalent properties a bond is said to have.
Ionic bonding is formed through electrostatic attraction between a cation and anion. Foe example, Sodium fluoride has ionic bonding because it is composed by sodium and Fluorine (a non metal). On the other hand, covalent bonding is characterized by atoms sharing pairs of electrons. For example; methane has covalent bonding; carbon has 4 valence electrons and hydrogen has 1; when they bond they have a total of 8 electrons and satisfies the octet rule.