Answer:
minimum and value of 4
Step-by-step explanation:

When
we will be able to get the critical points.


The graph is a quadratic graph with a 'U' shape, thus it has a minimum critical point.
If there are no duplications among the six numbers, then they sit at
<em>six different points</em> on the number line.
Irrational numbers are on the same number line as rational ones.
The only difference is that if somebody comes along, points at one of them,
and asks you to tell him its EXACT location on the line, you can answer him
with digits and a fraction bar if it's a rational one, but not if it's an irrational one.
For example:
Here are some rational numbers. You can describe any of these EXACTLY
with digits and/or a fraction bar:
-- 2
-- 1/2
-- (any whole number) divided by (any other whole number)
(this is the definition of a rational number)
-- 19
-- (any number you can write with digits) raised to
(any positive whole-number power)
-- 387
-- 4.0001
-- (zero or any integer) plus (zero or any repeating decimal)
-- 13.14159 26535 89792
-- (any whole number) + (any decimal that ends, no matter how long it is)
(this doesn't mean that a never-ending decimal isn't rational; it only
means that a decimal that ends IS rational.
Having an end is <em><u>enough</u></em> to guarantee that a decimal is rational,
but it's not <em><u>necessary</u></em> in order for the decimal to be rational.
There are a huge number of decimals that are rational but never end.
Like the decimal forms of 1/3, 1/6, 1/7, 1/9, 1/11, etc.)
--> the negative of anything on this list
Here are some irrational numbers. Using only digits, fraction bar, and
decimal point, you can describe any of these <em><u>as close</u></em> as anybody wants
to know it, but you can never write EXACTLY what it is:
-- pi
-- square root of √2
-- any multiple of √2
-- any fraction of √2
-- e
-- almost any logarithm
Answer:
47/48
Step-by-step explanation:
47/48=.97916666666
49/50=.98
Answer:
An object moving along the x-axis is said to exhibit simple harmonic motion if its position as a function of time varies as
x(t) = x0 + A cos(ωt + φ).
The object oscillates about the equilibrium position x0. If we choose the origin of our coordinate system such that x0 = 0, then the displacement x from the equilibrium position as a function of time is given by
x(t) = A cos(ωt + φ).
A is the amplitude of the oscillation, i.e. the maximum displacement of the object from equilibrium, either in the positive or negative x-direction. Simple harmonic motion is repetitive. The period T is the time it takes the object to complete one oscillation and return to the starting position. The angular frequency ω is given by ω = 2π/T. The angular frequency is measured in radians per second. The inverse of the period is the frequency f = 1/T. The frequency f = 1/T = ω/2π of the motion gives the number of complete oscillations per unit time. It is measured in units of Hertz, (1 Hz = 1/s).
The velocity of the object as a function of time is given by
v(t) = dx(t)/dt = -ω A sin(ωt + φ),
and the acceleration is given by
a(t) = dv(t)/dt = -ω2A cos(ωt + φ) = -ω2x.
The equation would be 400+20c per week so if you do that equation, to figure it out 680-400=280 and then you would divide it by 20 and whatever that answer is, in this case it would be 14.