Combustion reaction for menthol is as follows;
CxHyOz + O₂ ---> xCO₂ + H₂O
Mass of CO₂ formed - 28.16 mg
Therefore number of moles formed - 28.16/ 44 g/mol = 0.64 mmol
Mass of water formed - 11.53 mg
number of water moles formed - 11.53 mg/18 g/mol = 0.64 mmol
From CO₂,
1 mol of CO₂ - 1 mol of C and 2 mol of O
therefore number of C moles - 0.64 mmol
O moles - 1.28 mmol
from H₂O
1 mol of H₂O - 2 mol of H and 1 mol of O
number of H moles - 1.28 mmol
O moles - 0.64 mmol
Mass of menthol initially - 10 mg
in reactions, the masses of products are equal to the masses of reactants. The excess mass to the products formed is due to O₂ in air
Original mass of menthol - 10 mg
mass of water and CO₂ - 11.53 mg + 28.16 mg = 39.69
Difference in mass - 39.69 - 10 = 29.69 mg
This difference comes from O moles in air - 29.69 mg/ 16 g/mol = 1.8556 mmol
then O moles coming from menthol - (1.28 + 0.64) - 1.8556 = 0.064 mmol
In menthol
C moles - 0.64 mmol
H moles - 1.28 mmol
O moles - 0.064 mmol
ratios of C:H:O
C H O
0.64 1.28 0.064
x1000 x1000 x1000 to get whole numbers
640 1280 64
10 20 1
Simplest ratio of C:H:O is 10:20:1
therefore empirical formula of menthol is C₁₀H₂₀O
Answer:
Explanation:
use the equation
moles = mass/mr
=19.9/79.5
=0.250moles of CuO
then do the same for
H = 2.02/1
=2.02
so CuO is the limiting reagent because there is less amount of it.
Hope this helps :)
8935982560 plz contact me
- See charge on ion is -1 .
Hence it has taken 1 electron
Now first look at EC of Fluorine(F)

- Now one electron added .hence no of electrons is 10now
Look at the EC

Or
![\\ \bull\sf\dashrightarrow [He]](https://tex.z-dn.net/?f=%5C%5C%20%5Cbull%5Csf%5Cdashrightarrow%20%5BHe%5D)
Option C is correct.