Moles are the ratio of the mass and the molar mass of the substance given and is estimated in mol. The moles that the lungs contain when it is full is 0.12 moles.
<h3>What is the relation of the volume and moles?</h3>
Moles of the substances are directly proportional to the volume of the substance and can be shown as,

Here,
Initial volume
= 2.9 L
Final volume
= 1.2 L
Initial moles = 
Final moles
= 0.049 mol
Substituting values in the equation:

Therefore, the number of moles in the lungs are 0.12 moles.
Learn more about moles and volumes here:
brainly.com/question/13909347
Answer:
Describe what is happening within the system when it is at equilibrium in terms of concentrations, reactions that occur, and reaction rates.
Explanation:
The chemical equilibrium state is the state where the rate of forward reaction becomes equal to the rate of backward reaction.
At this stage the change in concentration of reactants becomes equal to the change in concentration of products.
The reaction will never cease.
That is the reason chemical equilibrium is called dynamic equilibrium.
So, forward and backward reactions will be taking place continuously at equal rates.
Answer:
E) are electrically attracted to each other
Explanation:
Water molecule is polar because there is a difference in electronegativity values between hydrogen and oxygen. The hydrogen side of the molecule has a slight positive charge and the oxygen side is slightly negatively.
Positively and negatively charged ends cause water molecules to attract one another and for this reason water shows the properties mentioned in the question: cohesion, high specific heat, and high heat of vaporization.
Answer : The volume of gas occupy at
is, 1.25 L
Explanation :
Charles' Law : It states that volume of the gas is directly proportional to the temperature of the gas at constant pressure and number of moles.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Therefore, the volume of gas occupy at
is, 1.25 L