Answer:
Ion-ion force between Na+ and Cl− ions
London dispersion force between two hexane molecules
Explanation:
"Ion-dipole force between Na+ ions and a hexane molecule
" does not exist since hexane has only non-polar bonds and therefore no dipole.
"Ion-ion force between Na+ and Cl− ions
" exists since both are ions.
"Dipole-dipole force between two hexane molecules
" does not exist since hexane molecules do not have a dipole.
"Hydrogen bonding between Na+ ions and a hexane molecule
" does not exist since the hydrogen in the hydrogen bond must be bonded directly to an electronegative atom, which hexane does not have since it is a hydrocarbon.
"London dispersion force between two hexane molecules" exist since hexane is a molecular compound.
Because im pretty sure the molecules would just fall apart like salt which is ionic
Answer:
E = 29.7× 10⁻²⁰ j
Explanation:
Given data;
Frequency of light = 4.48 × 10¹⁴ Hz
Energy of photon = ?
Solution:
Formula:
E = h.f
E = energy of photon
h = planck's constant
f = frequency
E = h.f
E = 6.63 × 10⁻³⁴ Kg.m² /s × 4.48 × 10¹⁴ s⁻¹
E = 29.7× 10⁻²⁰ Kg.m²/s²
Kg.m²/s² = j
E = 29.7× 10⁻²⁰ j
Answer:
Wide melting point range - impure sample with multiple compounds
Experimental melting point is close to literature value - pure sample of a single compound
Experimental melting point is below literature value - impure sample with multiple compounds
Narrow melting point range - pure sample of a single compound
Explanation:
The melting point of substances are easily obtainable from literature such as the CRC Handbook of Physics and Chemistry.
A single pure substance is always observed to melt within a narrow temperature range. This melting temperature is always very close to the melting point recorded in literature for the pure compound.
However, an impure sample with multiple compounds will melt over a wide temperature range. We also have to recall that impurities lower the melting point of a pure substance. Hence, the experimental melting point of an impure sample with multiple compounds is always below the literature value.
Answers:
______________________________________________
1) [D]: " CO₂ " .
<u>Note:</u><u> </u> This is the only answer choice given that is composed of: "at least two different elements" .
_______________________________________________
2) [D]: "carbon and hydrogen" {"C" and "H" .} .
_______________________________________________