Answer:
0.7g of HCl
Explanation:
First, let us write a balanced equation for the reaction between HCl and Al(OH)3.
This is illustrated below:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
Next, let us obtain the masses of Al(OH)3 and HCl that reacted together according to the equation. This can be achieved as shown below:
Molar Mass of Al(OH)3 = 27 + 3(16+1)
= 27 + 3(17) = 27 + 51 = 78g/mol.
Molar Mass of HCl = 1 + 35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 3 x 36.5 = 109.5g
Now we can obtain the mass of HCl that would react with 0.5g of Al(OH)3. This can be achieved as follow:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
From the equation above,
78g of Al(OH)3 reacted with 109.5g of HCl.
Therefore, 0.5g of Al(OH)3 will react with = (0.5 x 109.5)/78 = 0.7g of HCl
Answer:
12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Explanation:
Using a balanced chemical equation we can identify the number of carbon, hydrogen, and oxygen atoms in sugar.
CxHyOn + 12O₂ → 11 H₂O + 12CO₂
when an equation is completely balanced, then the number of each atom of an element is equal on the reactant side and the product side.
Therefore;
For carbon; x = 12
For Hydrogen; y = (11×2) = 22
For Oxygen; n + (12×2) = 11 + (12×2)
= n + 24 = 11 + 24
n = 11
Therefore the sugar has, 12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Thus the balanced equation would be;
C₁₂H₂₂O₁₁ + 12O₂ → 11 H₂O + 12CO₂
are suppose to make ur own problem if so
I would do for time 2 distance would be 4 and keep adding on 2 example
time: 2
distance:4
time: 4
distance: 8
Hello!
You need to calculate the volume of the container. To calculate the volume of this amount of N₂ gas we need to make the assumption that N₂ behaves like an
ideal gas.
1 mole of an ideal gas under Standard Temperature and Pressure occupies
22,4 L so the calculations are as follows:
So, the volume of the container should be
1,028 L or more.
Have a nice day!