1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Answer: At the point when space experts take a gander at an article's range, they can decide its arrangement dependent on these frequencies. The most well-known technique stargazers use to decide the sythesis of stars, planets, and different articles is spectroscopy. This spread-out light is known as a range.
Explanation:
Answer:
3.89 kg P2O5 must be used to supply 1.69 kg Phosphorus to the soil.
Explanation:
The molecular mass of P2O5 is
P2 = 2* 31 = 62
O5 = 5 *<u> 16 = 80</u>
Molecular Mass = 142
Set up a Proportion
142 grams P2O5 supplies 62 grams of phosphorus
x kg P2O5 supplies 1.69 kg of phosphorus
Though this might be a bit anti intuitive, you don't have to convert the units for this question. The ratio is all that is important.
142/x = 62/1.69 Cross multiply
142 * 1.69 = 62x combine the left
239.98 = 62x Divide by 62
239.98/62 = x
3.89 kg of P2O5 must be used.