Answer:
1. <u>F = ma</u> <em>F = 0.2kg * 20m/s² = 4Kg * m/s² =</em> 4N
2. <u>F = ma</u> <em>F - 18Kg * 3m/s² = 54Kg * m/s² =</em> 54N
3. <u>F = ma</u> <em>F = 0.025Kg * 5m/s² =</em> 0.125N
4. <u>F = ma</u> <em>F = 50Kg * 4m/s² =</em> 200N
5. <u>F = ma</u> <em>F = 70Kg * 4m/s² =</em> 280N
6. <u>F = ma</u> <em>F = 9Kg * 9.8m/s² =</em> 88.2N
Explanation:
Hope this helps ! ^^
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.
Answer:
compressions; rarefactions
Explanation:
Answer:
4.64m/s
Explanation:
We can use the formula [ v = √2gh ] to solve for this problem. We know that g is constant acceleration (9.8), and h is height (1.1).
v = √2(9.8)(1.1)
v ≈ 4.64m/s
Best of Luck!