Answer:
a) 5 N b) 225 N c) 5 N
Explanation:
a) Per Coulomb's Law the repulsive force between 2 equal sign charges, is directly proportional to the product of the charges, and inversely proportional to the square of the distance between them, acting along the line that joins the charges, as follows:
F₁₂ = K Q₁ Q₂ / r₁₂²
So, if we make Q1 = Q1/5, the net effect will be to reduce the force in the same factor, i.e. F₁₂ = 25 N / 5 = 5 N
b) If we reduce the distance, from r, to r/3, as the factor is squared, the net effect will be to increase the force in a factor equal to 3² = 9.
So, we will have F₁₂ = 9. 25 N = 225 N
c) If we make Q2 = 5Q2, the force would be increased 5 times, but if at the same , we increase the distance 5 times, as the factor is squared, the net factor will be 5/25 = 1/5, so we will have:
F₁₂ = 25 N .1/5 = 5 N
Answer:
C. Both A and B
Explanation:
Fuses are rated by the amperage they can carry before heat melts the element. The fuse is ideal for protection against short circuits. Short circuits produce enough amperage to vaporize a fuse element and break connection in one cycle of a 60-cycle system.
Specifically, the voltage rating determines the ability of the fuse to suppress the internal arcing that occurs after a fuse link melts and an arc is produced.
The CORRECT answer would be false. They are different and so therefore the answer is false.
Hope this helped ‼️
Answer:
The potential energy (P.E) at the top is 392 J
The kinetic energy (K.E) at the top is 0 J
The potential energy (P.E) at the halfway point is 196 J.
The kinetic energy (K.E) at the halfway point is 196 J.
Explanation:
Given;
mass of the rock, m = 2 kg
height of the cliff, h = 20 m
speed of the rock at the halfway point, v = 14 m/s
The potential energy (P.E) and kinetic energy (K.E) when its at the top;
P.E = mgh
P.E = (2)(9.8)(20)
P.E= 392 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the top of the cliff = 0
K.E = ¹/₂(2)(0)²
K.E = 0
The potential energy (P.E) and kinetic energy (K.E) at the halfway point;
P.E = mg(¹/₂h)
P.E = (2)(9.8)(¹/₂ x 20)
P.E = 196 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the halfway point = 14 m/s
K.E = ¹/₂(2)(14)²
K.E = 196 J.
Answer:
Displacement.
Explanation:
The change in between the starting position (initial position) and your final position is the amount of distance you <em>actually </em>traveled.
For example, you can use a triangle. The distance you travel for side length a & b is equal to the distance you travel on side c (the hypotenuse). You are pretty much solving for the hypotenuse in this case, or the displacement.
~