Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
Factors that affect heat transfer are:
1) Difference in temperature,
2) Mass of the object
3) Specific heat of the object
Hope this helps!
In this item, we let x be the rate of the boat in still water and y be the rate of the current.
Upstream. When the boat is going upstream, the speed in still water is deducted by the speed of the current because the boat goes against the water. The distance covered is calculated by multiplying the number of hours and the speed.
(x - y)(3) = 144
Downstream. The speed of the boat going downstream is equal to x + y because the boat goes with the current.
(x + y)(2) = 144
The system of linear equations we can use to solve for x is,
3x - 3y = 144
2x + 2y = 144
We use either elimination or substitution.
We solve for the y of the first equation in terms of x,
y = -(144 - 3x)/3
Substitute this to the second equation,
2x + 2(-1)(144 - 3x)/3 = 144
The value of x from the equation is 60
<em>ANSWER: 60 km/h</em>
When gases, fluids, or other solids are in contact with a moving object
heat is produced due to friction.
Answer:
= 1000 hours
Explanation:
Earth's circumference is 10⁴ mile
speed of a sailboat is 10¹ mile/hour
distance = speed × time
10⁴ = 10¹ × t
t = 10⁴ / 10¹
t = 10³
= 1000 hours