Explanation:
A) Use Hooke's law to find the spring constant.
F = kx
40 N = k (0.4 m)
k = 100 N/m
B) Period of a spring-mass system is:
T = 2π √(m / k)
T = 2π √(2.6 kg / 100 N/m)
T = 1 s
Frequency is the inverse of period.
f = 1 / T
f = 1 Hz
Answer:
v₂ = 5.7 m/s
Explanation:
We will apply the law of conservation of momentum here:

where,
Total Initial Momentum = 340 kg.m/s
m₁ = mass of bike
v₁ = final speed of bike = 0 m/s
m₂ = mass of Sheila = 60 kg
v₂ = final speed of Sheila = ?
Therefore,

<u>v₂ = 5.7 m/s </u>
Answer:
r = 9.92 mm
Explanation:
Given that,
Mass of oil drop, 
It acquires 2 surplus electrons, q = +2e 
Potential difference, V = 620 V
Thie potential difference is applied between the pair of horizontal metal plates the drop is in equilibrium.
We need to find the distance between the plates.
At equilibrium,
mg = qE
Since, E = V/r (r is distance between plates)

So, the distance between the plates is 9.92 mm.
300/8 = 37.5
37.5 x 12 = 450
New temp. = 450 K
Hope this helps!