The world’s supply of fossil fuels will dwindle slowly until a replacement source is found that provides the same power.
bc some day we will actually run out of it and find sth that gives power
The angular momentum of a rotation object is the product of its moment of inertia and its angular velocity:
L = Iω
L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
Apply the conservation of angular momentum. The total angular momentum before disks A and B are joined is:
L_{before} = (3.3)(6.6) + B(-9.3)
L_{before} = -9.3B+21.78
where B is the moment of inertia of disk B.
The total angular momentum after the disks are joined is:
L_{after} = (3.3+B)(-2.1)
L_{after} = -2.1B-6.93
L_{before} = L_{after}
-9.3B + 21.78 = -2.1B - 6.93
B = 4.0kg·m²
The moment of inertia of disk B is 4.0kg·m²
answer:
yes
explanation:
At a separation of the surface of Earth (r=6400km) gravity wants pull the test mass closer and closer. ... So the work done by gravity is NEGATIVE. The gravitational potential energy is negative because us trying to do the opposite of what gravity wants needs positive energy.
It is Amperes(A), so the answer is A