Answer: b
Explanation:
Ec= (1/2)m × v^2
By the formula, you can see that the bigger the mass, the bigger the Cinetic Energy.
<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>
The smallest unit of an element that has all the properties of the element is an atom. This has all the properties of an atom, including the particles.
On the moon, the gravitational acceleration is 1/6 of 9.8 m/s², so
g = 9.8/6 = 1.633 m/s²
Launch speed = 35 m/s
Launch angle = 27° above the horizontal.
Therefore,
The horizontal velocity is
u = 35*cos(27) = 31.1852 m/s
The vertical launch velocity is
v = 35*sin(27) = 15.8897 m/s
Part A
When the ball reaches maximum height, the time requires is given by
0 = v - gt
t = v/g = 15.8897/1.6333 = 9.7286 s
This is one half of the time of flight, which is
2*9.7286 = 19.457 s
Answer: 19.46 s (2 sig. figs)