Answer:
Answer is B.
Because the wavelength of infrared is shorter than microwave radiation
M1U1 + M2V2 = (M1+M2)V, where M1 is the mass of the moving car, M2 is the mass of the stationary car, U1 is the initial velocity, and V is the common velocity after collision.
therefore;
(1060× 16) + (1830 ×0) = (1060 +1830) V
16960 = 2890 V
V = 5.869 m/s
The velocity of the cars after collision will be 5.689 m/s
Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt
As we know by work energy theorem
total work done = change in kinetic energy
so here we can say that wok done on the box will be equal to the change in kinetic energy of the system

initial the box is at rest at position x = x1
so initial kinetic energy will be ZERO
at final position x = x2 final kinetic energy is given as

now work done is given as

so we can say

so above is the work done on the box to slide it from x1 to x2
Answer:
The distance the bungee cord that would be stretched 0.602 m, should be selected when pulled by a force of 380 N.
Explanation:
As from the given data
the length of the rope is given as l=30 m
the stretched length is given as l'=41m
the stretched length required is give as y=l'-l=41-30=11m
the mass is m=95 kg
the force is F=380 N
the gravitational acceleration is g=9.8 m/s2
The equation of k is given by equating the energy at the equilibrium point which is given as

Here
m=95 kg, g=9.8 m/s2, h=41 m, y=11 m so

Now the force is
or

So here F=380 N, k=630.92 N/m

So the distance is 0.602 m