Density = Mass / Volume
V = 1.00 * 4.00 * 2.50 = 10 cm³
22.57 g/cm³ = Mass / 10 cm³
M = 22.57 g/cm³ * 10 cm³
M = 225.7 g
Answer: The mass of the block of osmium is 225.7 g.
Answer:
The pressure changes from 2.13 atm to 1.80 atm.
Explanation:
Given data:
Initial pressure = ?
Final pressure = 1.80 atm
Initial temperature = 86.0°C (86.0 + 273 = 359 K)
Final temperature = 30.0°C (30+273 =303 K)
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
P₁ = P₂T₁ /T₂
P₁ = 1.80 atm × 359 K / 303 K
P₁ = 646.2 atm. K /303 K
P₁ = 2.13 atm
The pressure changes from 2.13 atm to 1.80 atm.
Letter C would be the correct answer
Considering ideal gas:
PV= RTn
T= 25.2°C = 298.2 K
P1= 637 torr = 0.8382 atm
V1= 536 mL = 0.536 L
:. R=0.082 atm.L/K.mol
:. n= (P1V1)/(RT) = ((0.8382 atm) x (0.536 L))/
((0.082 atmL/Kmol) x (298.2K))
:. n= O.0184 mol
Then,
P2= 712 torr = 0.936842 atm
V2 = RTn/P2 = [(0.082atmL/
Kmol) x (298.2K) x (0.0184mol) ]/(0.936842atm)
:.V2 = 0.4796 L
OR
V2 = 479.6 ml
Answer:
the answer is destructive interference